Freshwater ecology and conservation play a big role in infrastructure projects like bridges, dams, and more. We work with freshwater specialists, environmental engineers and natural resource managers to preserve these critical ecosystems.
Part of our vision is thriving natural systems, in addition to the communities and businesses they support. Freshwater ecosystems, especially in the Southeast, are critical natural resources that we aim to conserve and study not just in addition to, but as a crucial part of our infrastructure projects.
Ongoing Research
Recent Publications
The potential for nature-based solutions to combat the freshwater biodiversity crisis (PLOS Water, June 2023)
Authors: C. van Rees, S. Jumani, L. Abera, L. Rack, S.K. McKay and S. Wenger.
Abstract: Enthusiasm for and investments in nature-based solutions (NBS) as sustainable strategies for climate adaptation and infrastructure development is building among governments, the scientific community, and engineering practitioners. This is particularly true for water security and water-related risks. In a freshwater context, NBS may provide much-needed “win-wins” for society and the environment that could benefit imperiled freshwater biodiversity. Such conservation benefits are urgently needed given the ongoing freshwater biodiversity crisis, with declines in freshwater species and their habitats occurring at more than twice the rate of marine or terrestrial systems. However, for NBS to make meaningful contributions to safeguarding freshwater biodiversity, clear links must be established between NBS applications and priorities for conservation. In this paper, we link common water-related NBS to six priority actions for freshwater life established by the conservation science n community, and highlight priority research and knowledge that will be necessary to bring NBS to bear on the freshwater biodiversity crisis. In particular, we illustrate how NBS can play a direct role in restoring degraded aquatic and floodplain ecosystems, enhancing in-stream water quality, and improving hydrological connectivity among freshwater ecosystems. System-level monitoring is needed to ensure that freshwater NBS deliver on their promised benefits for ecosystems and species.
Patterns, drivers, and a predictive model of dam removal cost in the United States (Frontiers in Ecology and Evolution, July 2023)
Authors: J. Duda, S. Jumani, D. Wieferich, D. Tullos, S.K. McKay, T. Randle, A. Jansen, S. Bailey, B. Jensen, R. Johnson, E. Wagner, K. Richards, S. Wenger, E. Walther and J. Bountry.
Abstract: Given the burgeoning dam removal movement and the large number of dams approaching obsolescence in the United States, cost estimating data and tools are needed for dam removal prioritization, planning, and execution. We used the list of removed dams compiled by American Rivers to search for publicly available reported costs for dam removal projects. Total cost information could include component costs related to project planning, dam deconstruction, monitoring, and several categories of mitigation activities. We compiled reported costs from 455 unique sources for 668 dams removed in the United States from 1965 to 2020. The dam removals occurred within 571 unique projects involving 1–18 dams. When adjusted for inflation into 2020 USD, cost of these projects totaled $1.522 billion, with per-dam costs ranging from $1 thousand (k) to $268.8 million (M). The median cost for dam removals was $157k, $823k, and $6.2M for dams that were< 5 m, between 5–10 m, and > 10 m in height, respectively. Geographic differences in total costs showed that northern states in general, and the Pacific Northwest in particular, spent the most on dam removal. The Midwest and the Northeast spent proportionally more on removal of dams less than 5 m in height, whereas the Northwest and Southwest spent the most on larger dam removals > 10 m tall. We used stochastic gradient boosting with quantile regression to model dam removal cost against potential predictor variables including dam characteristics (dam height and material), hydrography (average annual discharge and drainage area), project complexity (inferred from construction and sediment management, mitigation, and post-removal cost drivers), and geographic region. Dam height, annual average discharge at the dam site, and project complexity were the predominant drivers of removal cost. The final model had an R2 of 57% and when applied to a test dataset model predictions had a root mean squared error of $5.09M and a mean absolute error of $1.45M, indicating its potential utility to predict estimated costs of dam removal. We developed a R shiny application for estimating dam removal costs using customized model inputs for exploratory analyses and potential dam removal planning.
Advancing stream classification and hydrological modeling of ungaged basins for environmental flow management in coastal southern California (Hydrology and Earth System Sciences, August 2023)
Authors: S. Adams, B. Bledsoe and E. Stein.
Abstract: Environmental streamflow management can improve the ecological health of streams by returning modified flows to more natural conditions. The Ecological Limits of Hydrologic Alteration (ELOHA) framework for developing regional environmental flow criteria has been implemented to reverse hydromodification across the heterogenous region of coastal southern California (So. CA) by focusing on two elements of the flow regime: streamflow permanence and flashiness. Within ELOHA, classification groups streams by hydrologic and geomorphic similarity to stratify flow–ecology relationships. Analogous grouping techniques are used by hydrologic modelers to facilitate streamflow prediction in ungaged basins (PUB) through regionalization. Most watersheds, including those needed for stream classification and environmental flow development, are ungaged. Furthermore, So. CA is a highly heterogeneous region spanning gradients of urbanization and flow permanence, which presents a challenge for regionalizing ungaged basins. In this study, we develop a novel classification technique for PUB modeling that uses an inductive approach to group perennial, intermittent, and ephemeral regional streams by modeled hydrologic similarity followed by deductively determining class membership with hydrologic model errors and watershed metrics. As a new type of classification, this hydrologic-model-based classification (HMC) prioritizes modeling accuracy, which in turn provides a means to improve model predictions in ungaged basins while complementing traditional classifications and improving environmental flow management. HMC is developed by calibrating a regional catalog of process-based rainfall–runoff models, quantifying the hydrologic reciprocity of calibrated parameters that would be unknown in ungaged basins and grouping sites according to hydrologic and physical similarity. HMC was applied to 25 USGS streamflow gages in the “South Coast” region of California and was compared to other hybrid PUB approaches combining inductive and deductive classification. Using an average cluster error metric, results show that HMC provided the most hydrologically similar groups according to calibrated parameter reciprocity. Hydrologic-model-based classification is relatively complex and time-consuming to implement, but it shows potential for simplifying ungaged basin management. This study demonstrates the benefits of thorough stream classification using multiple approaches and suggests that hydrologic-model-based classification has advantages for PUB and building the hydrologic foundation for environmental flow management.
Integrating channel design and assessment methods based on sediment transport capacity in gravel bed streams (Journal of the American Water Resources Association, February 2023)
Authors: H.Y. Hall and B. Bledsoe.
Abstract: Natural channel design (NCD) and analytical channel design (ACD) are two competing approaches to stable channel design that share fundamental similarities in accounting for sediment transport processes with designs based on hybrid fluvial geomorphology and hydraulic engineering methods. In this paper, we highlight the linkage between ACD’s capacity/supply ratio (CSR) and NCD’s sediment capacity models (FLOWSED/POWERSED), illustrating how ACD and NCD have reached a point of convergent evolution within the stream restoration toolbox. We modified an existing CSR analytical spreadsheet tool which enabled us to predict relative channel stability using both conventional bed load transport equations and regional sediment regression curves. The stable channel design solutions based on measured data most closely matched the Parker (ACD) and/or Pagosa good/fair (NCD) relationships, which also showed the greatest CSR sensitivity in response to channel alterations. We found that CSR differences among the transport relationships became more extreme the further the design width deviated from the supply reach, suggesting that a stable upstream supply reach may serve as the best design analog. With this paper, we take a step toward resolving lingering controversy in the field of stream restoration, advancing the science and practice by reconciling key differences between ACD and NCD in the context of reach scale morphodynamics.
Mowers versus growers: Riparian buffer management in the Southern Blue Ridge Mountains, USA (Journal of the American Water Resources Association, April 2023)
Authors: J. Sanders, C.R. Jackson and M. Welch-Devine.
Abstract: Despite long-standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high-resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows: no buffer (32.5%), narrow (19.3%), forested (26.7%), shrub (7.2%), and intermediate (7.0%). Relative to 1998, the greatest decrease occurred in the no buffer class (−17.7%, 46 km) and the largest increases occurred in the shrub (+72.5%, 20 km) and narrow (12.6%, 14 km) classes. Forested buffer marginally increased. Semi-structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non-adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.
Nonpoint source pollution measures in the Clean Water Act have no detectable impact on decadal trends in nutrient concentrations in US inland waters (Ambio, June 2023)
Authors: N. Tomczyk, L. Naslund, C. Cummins, E. Bell, P. Bumpers and A. Rosemond.
Abstract: The Clean Water Act (CWA) of 1972 regulates water quality in U.S. inland waters under a system of cooperative federalism in which states are delegated implementation and enforcement authority of CWA provisions by the U.S. Environmental Protection Agency. We leveraged heterogeneity in state implementation of the CWA to evaluate the efficacy of its nonpoint source provisions in reducing nutrient pollution, the leading cause of water quality impairment in U.S. inland waters. We used national survey data to estimate changes in nutrient concentrations over a decade and evaluated the effect of state-level policy implementation. We found no evidence to support an effect of (i) grant spending on nonpoint source pollution remediation, (ii) nutrient criteria development, or (iii) water quality monitoring intensity on 10-year trends in nutrient concentrations. These results suggest that the current federal policy paradigm for improving water quality is not creating desired outcomes.
Freshwater in IRIS News
-
Making Room for the River: Matt Chambers featured on Resources Radio
-
Make a Dam Decision: Facilitating Dam Removals Through New Multiple-Criteria Decision Analysis Tool
-
The American Society of Civil Engineers endorses the use of nature-based solutions as crucial tool in combatting climate change in new policy statement
-
IRIS researchers co-produce online training on ecological stream mitigation practices for wetland managers
-
New publication: Spatial planning to maximize levee setback co-benefits
-
Restoring Mannington Meadows: Wetland researchers take a field trip to New Jersey
-
IRIS presentations from the 2024 N-EWN Partner Symposium
-
UGA Today: People are altering decomposition rates in waterways
-
Managing the ebb & flow of the I-85 corridor